Recombination Can Partially Substitute for SPO13 in Regulating Meiosis I in Budding Yeast
نویسندگان
چکیده
منابع مشابه
Recombination can partially substitute for SPO13 in regulating meiosis I in budding yeast.
Recombination and chromosome synapsis bring homologous chromosomes together, creating chiasmata that ensure accurate disjunction during reductional division. SPO13 is a key gene required for meiosis I (MI) reductional segregation, but dispensable for recombination, in Saccharomyces cerevisiae. Absence of SPO13 leads to single-division meiosis where reductional segregation is largely eliminated,...
متن کاملTranscriptional regulation of meiosis in budding yeast.
Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activati...
متن کاملSpo13 protects meiotic cohesin at centromeres in meiosis I.
In the absence of Spo13, budding yeast cells complete a single meiotic division during which sister chromatids often separate. We investigated the function of Spo13 by following chromosomes tagged with green fluorescent protein. The occurrence of a single division in spo13Delta homozygous diploids depends on the spindle checkpoint. Eliminating the checkpoint accelerates meiosis I in spo13Delta ...
متن کاملSpo13 Maintains Centromeric Cohesion and Kinetochore Coorientation during Meiosis I
BACKGROUND The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages...
متن کاملATR/Mec1 prevents lethal meiotic recombination initiation on partially replicated chromosomes in budding yeast
During gamete formation, crossover recombination must occur on replicated DNA to ensure proper chromosome segregation in the first meiotic division. We identified a Mec1/ATR- and Dbf4-dependent replication checkpoint in budding yeast that prevents the earliest stage of recombination, the programmed induction of DNA double-strand breaks (DSBs), when pre-meiotic DNA replication was delayed. The c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetics
سال: 2000
ISSN: 1943-2631
DOI: 10.1093/genetics/155.4.1607